Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
BMJ Open ; 14(4): e078911, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38626977

INTRODUCTION: Understanding human mobility's role in malaria transmission is critical to successful control and elimination. However, common approaches to measuring mobility are ill-equipped for remote regions such as the Amazon. This study develops a network survey to quantify the effect of community connectivity and mobility on malaria transmission. METHODS: We measure community connectivity across the study area using a respondent driven sampling design among key informants who are at least 18 years of age. 45 initial communities will be selected: 10 in Brazil, 10 in Ecuador and 25 in Peru. Participants will be recruited in each initial node and administered a survey to obtain data on each community's mobility patterns. Survey responses will be ranked and the 2-3 most connected communities will then be selected and surveyed. This process will be repeated for a third round of data collection. Community network matrices will be linked with each country's malaria surveillance system to test the effects of mobility on disease risk. ETHICS AND DISSEMINATION: This study protocol has been approved by the institutional review boards of Duke University (USA), Universidad San Francisco de Quito (Ecuador), Universidad Peruana Cayetano Heredia (Peru) and Universidade Federal Minas Gerais (Brazil). Results will be disseminated in communities by the end of the study.


Community Networks , Malaria , Humans , Peru/epidemiology , Ecuador/epidemiology , Brazil/epidemiology , Malaria/epidemiology , Malaria/prevention & control
2.
medRxiv ; 2023 Nov 29.
Article En | MEDLINE | ID: mdl-38076857

Objectives: Understanding human mobility's role on malaria transmission is critical to successful control and elimination. However, common approaches to measuring mobility are ill-equipped for remote regions such as the Amazon. This study develops a network survey to quantify the effect of community connectivity and mobility on malaria transmission. Design: A community-level network survey. Setting: We collect data on community connectivity along three river systems in the Amazon basin: the Pastaza river corridor spanning the Ecuador-Peru border; and the Amazon and Javari river corridors spanning the Brazil-Peru border. Participants: We interviewed key informants in Brazil, Ecuador, and Peru, including from indigenous communities: Shuar, Achuar, Shiwiar, Kichwa, Ticuna, and Yagua. Key informants are at least 18 years of age and are considered community leaders. Primary outcome: Weekly, community-level malaria incidence during the study period. Methods: We measure community connectivity across the study area using a respondent driven sampling design. Forty-five communities were initially selected: 10 in Brazil, 10 in Ecuador, and 25 in Peru. Participants were recruited in each initial node and administered a survey to obtain data on each community's mobility patterns. Survey responses were ranked and the 2-3 most connected communities were then selected and surveyed. This process was repeated for a third round of data collection. Community network matrices will be linked with eadch country's malaria surveillance system to test the effects of mobility on disease risk. Findings: To date, 586 key informants were surveyed from 126 communities along the Pastaza river corridor. Data collection along the Amazon and Javari river corridors is ongoing. Initial results indicate that network sampling is a superior method to delineate migration flows between communities. Conclusions: Our study provides measures of mobility and connectivity in rural settings where traditional approaches are insufficient, and will allow us to understand mobility's effect on malaria transmission.

3.
Front Public Health ; 11: 1189861, 2023.
Article En | MEDLINE | ID: mdl-37427272

Background: Estimating and analyzing trends and patterns of health loss are essential to promote efficient resource allocation and improve Peru's healthcare system performance. Methods: Using estimates from the Global Burden of Disease (GBD), Injuries, and Risk Factors Study (2019), we assessed mortality and disability in Peru from 1990 to 2019. We report demographic and epidemiologic trends in terms of population, life expectancy at birth (LE), mortality, incidence, prevalence, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) caused by the major diseases and risk factors in Peru. Finally, we compared Peru with 16 countries in the Latin American (LA) region. Results: The Peruvian population reached 33.9 million inhabitants (49.9% women) in 2019. From 1990 to 2019, LE at birth increased from 69.2 (95% uncertainty interval 67.8-70.3) to 80.3 (77.2-83.2) years. This increase was driven by the decline in under-5 mortality (-80.7%) and mortality from infectious diseases in older age groups (+60 years old). The number of DALYs in 1990 was 9.2 million (8.5-10.1) and reached 7.5 million (6.1-9.0) in 2019. The proportion of DALYs due to non-communicable diseases (NCDs) increased from 38.2% in 1990 to 67.9% in 2019. The all-ages and age-standardized DALYs rates and YLLs rates decreased, but YLDs rates remained constant. In 2019, the leading causes of DALYs were neonatal disorders, lower respiratory infections (LRIs), ischemic heart disease, road injuries, and low back pain. The leading risk factors associated with DALYs in 2019 were undernutrition, high body mass index, high fasting plasma glucose, and air pollution. Before the COVID-19 pandemic, Peru experienced one of the highest LRIs-DALYs rates in the LA region. Conclusion: In the last three decades, Peru experienced significant improvements in LE and child survival and an increase in the burden of NCDs and associated disability. The Peruvian healthcare system must be redesigned to respond to this epidemiological transition. The new design should aim to reduce premature deaths and maintain healthy longevity, focusing on effective coverage and treatment of NCDs and reducing and managing the related disability.


COVID-19 , Noncommunicable Diseases , Respiratory Tract Infections , Aged , Female , Humans , Infant, Newborn , Male , Middle Aged , COVID-19/epidemiology , Life Expectancy , Pandemics , Peru/epidemiology , Quality-Adjusted Life Years , Infant , Child, Preschool
4.
Trials ; 22(1): 342, 2021 May 17.
Article En | MEDLINE | ID: mdl-34001174

OBJECTIVES: The general objective of this study is to test the hypothesis that administration of convalescent plasma from donors with previous diagnosis of severe COVID-19 pneumonia is safe and associated with a decrease in all-cause in-hospital mortality among hospitalized patients with COVID-19 at 30 days in comparison with standard treatment alone. The secondary objectives are as follows: (1) to assess the efficacy of convalescent plasma to reduce the length of hospitalization, (2) to assess the efficacy of convalescent plasma to reduce the length of ICU stay, and (3) to assess the efficacy of convalescent plasma on reducing the requirement of invasive mechanical ventilation or ICU stay. TRIAL DESIGN: PERUCONPLASMA is a IIb phase open label, randomized, superiority clinical trial with 1:1 allocation taking place in real life routine clinical practice at public hospitals in Lima, Peru. Participants will be randomized to receive convalescent plasma along with local standard treatment or local standard treatment alone. After allocation, all participants will be followed for a total of 30 days or until hospital discharge, whichever occurs first. PARTICIPANTS: The population for the study are patients with severe disease with a confirmed laboratory test for SARS-CoV-2 infection hospitalized in 3 tertiary-care hospitals in Lima, Peru. Subjects are eligible for the trial if they meet all of the following inclusion criteria: 1. Age 18 or older 2. Hospitalization due to COVID-19 with laboratory confirmation (either with serologic, molecular, or antigen test along with a compatible clinical presentation) 3. Severe or critical COVID-19 disease Severe illness was defined by 2 or more of the following: Respiratory rate of 22 or more Hypoxemia with oxygen saturation equal or less than 93% Abnormal blood gas analysis (PaO2 < 60 mmHg, PaCO2 > 50 mmHg, or Pa/FiO2 < 300) Critical disease was defined by either: Mechanical ventilation requirement less than 72 h. Shock. 4. Capacity to provide informed consent (patient or patient's direct relative) 5. Availability of convalescent plasma units compatible with ABO blood type of the subject. EXCLUSION CRITERIA: Subjects are not eligible for the trial if they meet any of the following criteria: 1. Contraindication for transfusion (e.g., prior anaphylaxis, congestive heart failure) 2. Hemodynamic instability (PA < 60 mmHg refractory to vasopressors) 3. Uncontrolled concomitant infections\ 4. Stupor or coma 5. Platelets < 50,000/µL or disseminated intravascular coagulation 6. Serum creatinine > 3.5 mg/dL or dialysis requirement 7. Total bilirubin > 6 mg/dL or jaundice of unknown etiology 8. Myocardial infarction or acute coronary syndrome 9. Active or recent (< 7 days) intracranial hemorrhage 10. Pregnancy Donors: The donors have to meet the following criteria: male between 30 and 60 years with a previous diagnosis of severe COVID-19-associated pneumonia within the last 3 months, with resolution of symptoms of at least 28 days. The rationale for including donors with severe disease is to maximize the probability of collecting convalescent plasma units with high titer of neutralizing antibodies, as the technology to measure this specific type of antibodies is not routinely available in Peru. Aliquots of plasma will be stored for future quantification of neutralizing antibodies. INTERVENTION AND COMPARATOR: Convalescent plasma from donors with previous severe COVID-19 is the investigational medical product. The experimental group will receive 1 to 2 units of 200 to 250 ml of convalescent plasma along with local standard treatment. The control group will receive local standard treatment alone. The participants randomized to plasma will have evaluations at 6 h and 24 h to specifically evaluate possible post transfusion events. All the participants will be evaluated at day 3, day 7, and day 30 after enrolment. MAIN OUTCOMES: Safety outcome: Incidence of serious adverse reactions related to convalescent plasma transfusion within 24 h after convalescent plasma administration. Efficacy outcomes: Mortality from any cause during hospitalization at 30 days post randomization. Length of hospitalization at 30 days post randomization or until hospital discharge. Duration of mechanical ventilation at 30 days post randomization or until hospital discharge. Length of hospitalization in an intensive care unit at 30 days post randomization or until hospital discharge. Exploratory: Oxygen requirement evolution at days 3 and 7. Score Sequential Organ Failure Assessment (SOFA) evolution at days 3 and 7. Dynamics of inflammatory marker (lymphocyte, C-reactive protein (CRP), D-dimer, lactate dehydrogenase (LDH)) evolution at days 3 and 7. Proportion of patients progressing to multi-organ failure at 30 days post randomization or until hospital discharge. Proportion of transfusion related adverse reactions at 30 days post randomization or until hospital discharge. RANDOMIZATION: Randomization will be carried out within the electronic case report form (eCRF) in 1:1 ratio (receive plasma/control) in a randomization process established by blocks of size 2, 4, and 6. Allocation to the treatment arm of an individual patient will not be available to the investigators before completion of the whole randomization process. Randomization blocks will be performed with "ralloc", Stata's randomization process v.16.0. Randomization through the eCRF will be available 24 h every day. BLINDING (MASKING): Both the participants and study staff will be aware of the allocated intervention. Blinded statistical analysis will be performed. NUMBERS TO BE RANDOMIZED (SAMPLE SIZE): The sample size was calculated using the Fleiss formula with continuity correction to detect a mortality reduction from 50 to 20% between the two treatment arms with a confidence level of 95% and a power of 80%. Based on this information, a total of 45 patients per arm would be needed. After adjustment for a drop-out rate of 10% after enrolment, a total of 50 patients per arm (100 patients in total) will be enrolled. TRIAL STATUS: Current protocol version: 5.0 dated January 04, 2021. Recruitment started on September 21, 2020, and is expected to finish by the end of March 2021. TRIAL REGISTRATION: Peruvian Register of Clinical Trials (REPEC) ID: PER-016-20, registered on June 27, 2020. Clinicaltrials.gov ID: NCT04497324 , registered on August 4, 2020. FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this letter serves as a summary of the key elements of the full protocol.


COVID-19 , Adolescent , Blood Component Transfusion , COVID-19/therapy , Humans , Immunization, Passive , Male , Peru , Plasma , Randomized Controlled Trials as Topic , SARS-CoV-2 , Treatment Outcome , COVID-19 Serotherapy
5.
Odovtos (En línea) ; 20(3): 105-113, Sep.-Dec. 2018. tab, graf
Article Es | LILACS, BBO | ID: biblio-1091464

RESUMEN La caries es una de las enfermedades de naturaleza infecciosa, crónica transmisible muy prevalente en el Perú, relacionada a la presencia del Streptococcus mutans, los hábitos de higiene y nutricionales. Objetivo: El propósito de este estudio fue determinar la presencia del genotipo C en el Streptococcus mutans en niños y adolescentes peruanos, utilizando la técnica PCR- Multiplex; y su asociación con la prevalencia de caries dental. Material y método: Se trabajó con una muestra de 78 niños y adolescentes de ambos sexos de Lima. El estudio consistió en dos fases, en la primera se obtuvo la saliva estimulada, para el cultivo bacteriano, las mismas que fueron sembradas en agar Mitis Salivarius con bacitracina y sulfisoxasol. En la segunda fase se realizó la genotipificación de acuerdo con su perfil enzimático. Para la extracción de ADN se utilizó el GF-1 Bacterial DNA Extraction Kit de GeneONGmbH para lo cual se realizó cultivos de las cepas de Streptococcus sp en el caldo BHI con sacarosa a 37ºC por 24 horas. Resultados: Se evidencia la presencia de Streptococcus mutans en 75.6%: 59 de 78 muestras de saliva. Los resultados de la genotipificación por PCR Multiplex demuestran la presencia de 22 muestras de saliva de Streptococcus mutans con genotipos C (37,29%) y 37 muestras (62,71%) que no pertenecen a dicho Genotipo. Conclusiones: Los resultados evidenciaron que el Streptococcus mutans genotipo C no está relacionado al sexo, grupo etario ni a la presencia de caries dental.


ABSTRACT Caries is one of the diseases of infectious nature, chronic transmissible very prevalent in Peru, related to the presence of Streptococcus mutans, hygienic and nutritional habits. Objective: The purpose of this study was to determine the presence of genotype C in Streptococcus mutans in Peruvian children and adolescents, using the PCR-Multiplex technique; and its association with the prevalence of dental caries. Materials and methods: The study was done with a sample of 78 children and adolescents of both sexes from Lima. The study consisted of two phases, on the first one the stimulated saliva was obtained, for the bacterial culture, the same ones that were grown on Mitis Salivarius agar with bacitracin and sulfisoxasol. On the second phase, genotyping was carried out according to its enzymatic profile. For the extraction of DNA, the Gene Extraction Kit GG-1 Bacterial DNA was used, for which cultures of Streptococcus sp strains were performed in the BHI broth with sucrose at 37ºC for 24 hours. Results: The presence of Streptococcus mutans was evidenced in 59 (75.6%) of 78 saliva samples. The results of the genotyping by PCR Multiplex demonstrate the presence of 22 saliva samples of Streptococcus mutans with genotypes C (37,297%) and 37 samples 62, 71 % without this Genotype. Conclusions: The results showed that the presence of genotype C is not related to sex, age group or the presence of dental caries.


Humans , Male , Female , Child , Adolescent , Streptococcus mutans/pathogenicity , Dental Caries/etiology , Multiplex Polymerase Chain Reaction/methods , Genetic Profile , Peru
...